

Department of Mathematics Stochastic Analysis (SS 2019) Dr. Alexander Fromm

Submission: 14.05.2019

Exercise sheet 5

Problem 1

Let $(B_t)_{t>0}$ be a Brownian motion. Let a > 0 > b and define

$$\tau_a := \inf \{ t \ge 0 \mid B_t = a \}, \quad \tau_b := \inf \{ t \ge 0 \mid B_t = b \},$$

and $\tau_{a,b} := \inf \{ t \ge 0 \mid B_t \notin (b,a) \} = \tau_a \wedge \tau_b.$

- (a) Show that $\mathbb{P}[\tau_{a,b} < \infty] = 1$, $\mathbb{P}[B_{\tau_{a,b}} = a] = \mathbb{P}[\tau_a < \tau_b] = \frac{b}{b-a}$ and that $\mathbb{E}[\tau_{a,b}] = -ab$. Hint: Use that $t \mapsto B_t$ and $t \mapsto B_t^2 - t$ are martingales.
- (b) Deduce that $\mathbb{P}[\tau_a < \infty] = 1$, but $\mathbb{E}[\tau_a] = \infty$.

Problem 2

Let $(B_t)_{t\geq 0}$ be a Brownian motion. For a > 0 let $\tau_a = \inf\{t \geq 0 \mid B_t = a\}$. For $\lambda > 0$ choose a suitable martingale to show that

$$\mathbb{E}\left[\exp(-\lambda\tau_a)\right] = \exp\left(-a\sqrt{2\lambda}\right).$$

Problem 3

Let $(B_t)_{t>0}$ be a Brownian motion and let $\mu > 0$.

- (a) Let $S_t = \exp(2\mu(B_t \mu t))$. Conclude that (S_t) is a martingale and that $\lim_{t\to\infty} S_t = 0$, \mathbb{P} -a.s.
- (b) For a > 0 consider

$$\sigma_a := \inf\{t \ge 0 \mid B_t - \mu t \ge a\}.$$

Show that $\mathbb{P}[\sigma_a < \infty] = e^{-2\mu a}$.

(4 Points)

(3 Points)

(4 Points)

Problem 4 - Brownian Bridge

(4 Points)

Let $(B_t)_{t\geq 0}$ be a Brownian motion and define

$$Y_t = B_t - tB_1, \quad t \in [0, 1].$$

 $(Y_t)_{t\geq 0}$ is a so-called Brownian bridge from zero to zero.

- (a) Compute $\mathbb{E}[Y_t]$ and $\operatorname{Cov}(Y_s, Y_t)$ for $s, t \in [0, 1]$.
- (b) Show that Y_t and B_1 are independent for all $t \in [0, 1]$.

Total: 15 Points

Terms of submission:

- Solutions can be submitted in groups of at most 2 students.
- Please submit at the beginning of the lecture or until 9:50 a.m. in room 3523, Ernst-Abbe-Platz 2.